Advances in ultrasound technology have allowed for hand-held cardiac ultrasound (HHCU) units that fit into a physician’s lab coat. Recently, studies to educate both medical students and internal medicine residents have shown promising results.1 The optimal duration and methodology for teaching HHCU skills has not been established. Our objective was to assess the effectiveness of two condensed educational programs occurring over a single clinical rotation to teach internal medicine residents diagnostic and technical skills of HHCU.

METHODS

24 INTERNAL MEDICINE RESIDENTS

24 JUNE 2013 - 23 MAY 2014

PROSPECTIVE RANDOMIZED

CONVENTIONAL WARD-BASED

TECHNOLOGY-DRIVEN

4 TEACHING SESSIONS (1 HOUR EACH)

1 SESSION SONOGRAPHER LEAD

3 SESSIONS WERE PEER-TO-PEER

ACCESS TO ONLINE MODULES

ACCESS TO iPAD BOOKS

4 SESSIONS PEER-TO-PEER

BACKGROUND

Our findings suggest that HHCU performance and interpretation skills improve following both a conventional ward-based or technology-driven approach.

More importantly, our study emphasizes the limitations of simulation-based teaching of HHCU skills since acquisition skill was superior following conventional ward-based teaching compared to the technology group. Lastly, we detected a significant increase in the false positive rate following both teaching programs. This suggests that a short duration of training may not be sufficient for HHCU to be performed in a safe and appropriate manner.

RESULTS

Our findings suggest that HHCU performance and interpretation skills improve following both a conventional ward-based or technology-driven approach.

More importantly, our study emphasizes the limitations of simulation-based teaching of HHCU skills since acquisition skill was superior following conventional ward-based teaching compared to the technology group. Lastly, we detected a significant increase in the false positive rate following both teaching programs. This suggests that a short duration of training may not be sufficient for HHCU to be performed in a safe and appropriate manner.

CONCLUSIONS

Our findings suggest that HHCU performance and interpretation skills improve following both a conventional ward-based or technology-driven approach.

More importantly, our study emphasizes the limitations of simulation-based teaching of HHCU skills since acquisition skill was superior following conventional ward-based teaching compared to the technology group. Lastly, we detected a significant increase in the false positive rate following both teaching programs. This suggests that a short duration of training may not be sufficient for HHCU to be performed in a safe and appropriate manner.

REFERENCE